

Some Variations on Training of

Recurrent Networks

Gary M. Kuhn and Norman P. Herzberg

Center for Communications Research - IDA

1 Introduction

We describe some variations on training of multi-layered recurrent

networks which overcome the need for an externally-supplied target

function, avoid back-propagation of error derivatives in time, reduce

training time, and enhance generalization.

 Applied to a speech recognition problem, these variations resulted in

as low a number of training iterations and as high a performance, as those

reported for cross-entropy trained, hidden Markov models. However, we

find that our recurrent networks have not provided a large performance

improvement over a competing non-recurrent network with a similar

number of weights.

2 The Task

Following [1,2,3] we have N = 768 speech signals Xn, selected samples of

which we have concatenated into one long signal. Each Xn belongs to one

of K = 4 classes. Each class represents one of the English letter names

“b”, “d”, “e” or “v”. We parameterize the speech at each 10ms time-frame

t = 1, ... , T of the concatenated signal, yielding vector observations x(t), T

= 18347. The parameterization is based on locally normalized filter-bank

channel energies ei(t), i = 1, ... , 16.

 We also have N labels mn = (sn,en,an) which indicate the start sample

sn, the end sample en, and the letter name an for each Xn. The Xn have

different durations. Letter name an is spoken once somewhere between

time samples sn and en.

Originally appeared in Neural Networks: theory and applications,
Richard J. Mammone and Yehoshua Y. Zeevi Eds. New York,
Academic Press, ISBN 0-12-467050-4, p. 233-244, 1991.

 We set up a network with sigmoid units and one hidden layer. We want

to train the network to accept each x(t) in turn as input, and for each input,

to produce a K-dimensioned vector o(t) as output. We want output unit k

to turn on only while a pattern from class k is present at the input.

 We believe that the response of the network to the current input should

be a function of earlier inputs. We want the network to learn how to

weight the current input relative to earlier inputs. We use a network

architecture that can accomplish this learning. One version introduces time

delays from lower layers to higher layers.[2,4] The other introduces time

delays from one layer to any other, making the network potentially

“recurrent”.[3,5]

 We now describe variations on network training which have led to

solutions to the following problems: (1) how to overcome the need for an

externally-supplied target function, (2) how to train the recurrent network

without back-propagating the derivatives of error in time, and (3) how to

reduce training time and enhance generalization.

3 Derive the Targets from an Input "Event"

 Parameter

This section presents an idea reported in [3]. We add a new speech

parameter, a temporal difference operator, r(t), defined over a time

window of width 2ût and filter-bank frequency channels i = 1, ... ,16, by

where 2 = 0, ..., ûW - 1, and ûW = 10 time frames. We use . = 2, and clip

at 1.

 r(t) is a shape-dependent energy increase indicator, which turns on at

those time frames where the vowel turns on r(t) can be thought of as an

“event” signal: when it turns on, something is happening.

 The target function is based on r(t). Let lag g be the (positive) number

of time frames from the appearance of a value of r(t) at the network input

to its desired appearance on the output of output unit an. Then for each

time frame t from sn through en,

targan(t) = r(t - g),

and

targk(t) = 0, k � an .

During time frames sn to sn + g -1, the target values are zero if n = 1, or are

based on values of r(t) in the preceding Xn if n > 1.

 The main point is that the network should learn to indicate which event

happened by reproducing input parameter r(t) with a lag of g time frames

on output unit an. To do so, it can use all of the input parameters, including

r(t).

4 Forward Propagate the Derivatives of the

 Potentials

This section presents an idea reported in several places. See [3,5-10] and

the review [11].

 To train network weight matrix W, we minimize E, the squared

difference between observed and target outputs summed over all output

units and time frames. Let weight w, from unit a to unit b with delay d, be

denoted wabd. We need equations for the gradient of E with respect to each

weight wabd.

 Let p(t) represent the weighted sum, or “potential” into a unit at time t.

We factor the derivative of the error at output unit k with respect to weight

wabd as

Note that in a multi-layer recurrent network, the error at time t depends on

potentials at all earlier times, except for those potentials in lower layers of

the network that are so recent that they have not yet affected the error-

producing outputs of the network.

 Two training variations for the recurrent network come immediately to

mind. We might store all unit outputs on a forward pass and back-

propagate the error derivative to t = 1, accumulating the negative

derivative of the error with respect to the potential of unit k, at all time

frames from T back to each t.[5] Or, on the forward pass, at each t we

might compute all unit outputs and then propagate the error derivative

back only to time frame t - 2, yielding a truncated approximation to the

gradient.[5]

 Wouldn't it be nice if we could propagate the derivative of the unit

potential forward, and multiply by the current error derivative at the same

time as the network error is generated. Then we could avoid any backward

pass.

 This is, of course, possible. Carrying out the differentiation, we obtain

a forward recursion at any unit c,

 (1)

From (1) we see that the difference between a feed-forward network and a

recurrent network is that for the recurrent network, the derivative of a

unit's potential can have other terms than just the output of the unit on the

input end of the connection.

 The forward recursion has the disadvantage that the number of partials

to carry forward can get large. The number of partials can be controlled by

limiting feed-back to so-called “context” units [12, 13], or by limiting the

number of feedback connections, e.g. by using only self-loops.

 For the recurrent networks which we report on here, feed-back was

limited to self-loops, either on output units, or on the hidden units, and

back-propagation in time was avoided using forward propagation of the

derivative of the unit potentials.

5 Try Adaptive Training

To reduce training time and enhance generalization, we consider

variations on (1) weight initialization, (2) frequency of weight updates, (3)

adaptation of the step size, (4) adaptation of the search direction, (5)

gradient evaluation during events, and (6) assignment of examples to

training and cross-validation data subsets. A third and entirely separate

dataset is, of course, kept for testing.

5.1 Initialization

Random initialization of the weights may produce a network which cannot

be trained. One remedy is to adjust the initial weights, as follows.

Evaluate E and �E/�W over a small but representative number of training

examples. Then, for each wabd, see whether the sign of wabd is the same as

the sign of �E/�wabd. If so, flip the sign of wabd and re-evaluate E. If the

new E is better than the previous E, keep the sign change and set E to the

new E. Continue for all weights.

 Applied to just 4 balanced sets of training examples, this weight

adjustment takes no more time than a couple of training iterations,

increases the probability that the network will be trainable, and reduces E

by about a factor of 2.

5.2 Frequency of Weight Updates

In the early stages of training, a rough estimate of �E/�W can be used to

point the weight changes quickly in a good, if not a perfect, direction. One

schedule for producing increasingly refined estimates of �(��: is the

following [14]. On each iteration i through the training examples, set the

size of the balanced block of examples over which �(��: is calculated

and after which W is updated, to iK.

 Unfortunately, for our examples, small blocks at the initial values of i

produce large fluctuations in E. Also, we want to avoid increasing block

size if training can continue faster at the current size.

 As a result, we propose a modified schedule. Let the initial block size

be the same as the number of examples over which W was initialized, and

divide the training examples into training and cross-validation subsets.

Here, we use a ratio of 4 to 1.

 Then on each iteration, evaluate �(��: and update W on each block in

the training subset. At the end of the iteration, evaluate Ev, the error on the

cross-validation subset. Keep the current block size until the number of

increases in Ev at the current block size equals nEv. Then, if possible,

increase the number of balanced sets of examples per block by 1. We set

nEv = 2, to tolerate one uptick but no oscillation.

5.3 Adaptation of the Search Direction

Rather than use ûW (= -�(��: on the current block) with a heuristic

momentum factor, the authors of [15] allowed search direction Z to be

given by the conjugate gradient [16]

with � computed from the Polak-Ribiere formula

We find that even if the previous negative gradient, ûWp, is computed on

a different block, E falls much faster with a computed � than with a

constant value for �.

5.4 Adaptation of the Step Size

Having computed some weight-change direction Z on the current block,

we search along Z for the best weight matrix Ñ satisfying

with � = .005. We try the following sequence of values for s. Initially, s is

set to the smallest s accepted over the last � = 6 blocks. Then EÑ is

computed. Then s 8�3x
s, where 3 = 1.61, and x is either +1 if EÑ is an

improvement or -1 if not. We accept s when EÑ gets worse and either s =

1, or at least three values have been tried for s.

 If three values have been tried, the accepted s may be moved under the

minimum of a quadratic fitted to the last three (s, E) pairs. Finally, W is

updated using the accepted s.

5.5 Gradient Evaluation during Events

Even though the target function is defined for all t, a threshold ! can be

established so that �(/�W is evaluated only when r(t - g) � ! signals an

event. This provides some speed-up and allows the network to learn

completely from event data. Matrix �P/�W is still computed at each t.

Here, we experiment with ! = 0.25.

5.6 Randomized Training and Cross-Validation

 Subsets

The network tends to overtrain, i.e., to pass from an initial stage during

which Et (the error on the training subset) and Ev are both reduced, to a

second stage during which only Et is reduced. Also, we have barely

enough examples to train the weights. We want a way to control

overtraining while keeping all examples not in the test set available for the

training subset.

 We propose the following procedure. On each iteration, re-assign the

training examples randomly to the training or cross-validation subsets. The

ratio of their sizes is still 4 to 1.

 With random re-assignment to the subsets, the instantaneous errors Et

and Ev now track each other closely. More importantly, neither error falls

so far that it becomes a bad predictor of error on the test dataset. Do they

fall as far as possible consistent with good prediction of error on the test

dataset? We do not know.

6 Simulation Results

Figure 1 shows the value of several quantities as a function of training

iteration. Quantities 1 and 2 are Et and Ev, the training and cross-validation

training errors. Quantity 3 is proportional to the number of blocks in the

training subset. Quantity 4 is the root mean square of the weights, which

seems to have stopped growing by iteration 100. Quantities 5 and 6 are the

fraction of training and cross-validation examples correctly recognized.

Because the training subset is much larger, quantity 5 looks less noisy.

 A recognition score is defined for the network response to concatenated

presentation of those Xn kept in a test dataset.[3] The score Eu|n for each

letter name u on each Xn is the sum over time frames in Xn, of the squared

difference between observed and expected network outputs, under the

hypothesis that Xn is an occurrence of letter name u. The expected outputs

are the same as the target values that would have been used if Xn were a

training example of letter name u. The network “recognizes” Xn if argminu

Eu|n is an. We now redefine Eu|n over frames where r(t - g) � !.

 In [3], the letter-name discrimination task is attacked using a network

with one hidden layer, 4 time delays from the input units to each of 8

hidden units, and 3 time delays from the hidden units to the output units.

Delays to the hidden units are 1 time-frame apart. Delays to the output

units are 2 time-frames apart.

 A version of that network without self-loops on the output units was

trained on 372 Xn for 1000 training iterations, and recognized 83.6% of

396 test Xn. Adding self-loops on the output units late in training produced

a network that recognized 84.6% of the test Xn.

 The same non-recurrent network now trains on 672 Xn in only 100

iterations, and each iteration takes half as much time. After 100 iterations

of training the non-recurrent network recognizes 88.5% of 128 test Xn.

Adding self-loops on the output units and training for another 10 iterations

produces a recurrent network that recognizes 89.6% of the test Xn.

 In an additional simulation, a single delay was used from hidden to

output units, the number of hidden units was increased to 9, and self-loops

were used only on the hidden units. For this network, the total number of

weights was nearly identical to the number in the network with multiple

hidden-to-output delays but no recurrence. Recognition results for this

additional network only reached 86.5% after 100 iterations.

 The number of iterations needed to train our best recurrent network is

now similar to the number needed to train hidden Markov models to cross-

entropy criteria.[17] Also, the performance of our best recurrent network,

89.6%, is now as good as the 89% estimated for cross-entropy trained,

hidden Markov models.[1,2]

 A recently reported “scanning” feedforward time-delay neural network

has apparently obtained connected recognition performance of 90.9% on

this dataset.[18] Unfortunately, the recurrent, the hidden Markov, and the

scanning system all perform significantly below the human level of 95%.

The goal remains to reach the human level of performance, which is even

97% on our full database of 9-letter names: “b, c, d, e, g, p, t, v” and “z”.

7 Conclusions

The network training variations described above reduced the number of

training iterations by a factor of 10, reduced training time by a factor of

20, and contributed to a reduction in recognition errors by 33%.

 Applied to a speech recognition problem, these variations resulted in as

low a number of training iterations and as high a performance, as those

reported for cross-entropy trained, hidden Markov models. However, we

find that our recurrent networks have not provided a large performance

improvement over a competing non-recurrent network with a similar

number of weights.

8 Acknowledgements

This is an expanded version of paper TP6.1 given at the 24th annual

Conference on Information Sciences and Systems, Princeton University,

March 22, 1990. The authors thank L. Bottou, P. Brown, P. Haffner, B.

Ladendorf, K. Lang, E. Ojamaa and R. Watrous for help with various

aspects of this work.

Bibliography

[1] Brown, P.F. The acoustic-modeling problem in automatic speech

recognition, IBM Computer Science Tech. Report RC 12750, p. 1-119,

1987.

[2] Lang, K.J. and G. Hinton. The development of the TimeDelay Neural

Network Architecture for speech recognition, Tech. Report CMU-CS-88-

152, Carnegie-Mellon University, p. 1-30, 1988.

[3] Kuhn, G., R.L. Watrous and B. Ladendorf. Connected recognition with

a recurrent network, Speech Communication, Vol. 9, p. 41-49, 1990.

[4] Waibel, A., T. Hanazawa, G. Hinton, K. Shikano and K. Lang.

Phoneme Recognition using time-delay neural networks, IEEE Trans.

ASSP, Vol 37, p. 328-339, 1989.

[5] Watrous, R.L., B. Ladendorf and G. Kuhn. Complete gradient

optimization of a recurrent network applied to |b|, |d|, |g| discrimination,

J. Acoust. Soc. Amer., Vol. 87, p. 1301-1309, 1990.

[6] Kuhn, G. A first look at phonetic discrimination using a connectionist

network with recurrent links, CCRP - IDA SCIMP Working Paper No.

4/87, p. 1-41, 1987.

[7] Robinson, A.J., F. Fallside. Static and dynamic error propagation

networks with application to speech coding, in D.Z. Anderson (ed.),

Neural Information Processing Systems, New York, Amer. Inst. Physics,

p. 632-641, 1987.

[8] Gori, M., Y. Bengio and R. De Mori. BPS: A learning algorithm for

capturing the dynamic nature of speech, Proc. IntI. Joint Conf. on Neural

Networks, Washington, D.C., Vol. II, p. 417-423, 1989.

[9] Gherrity, M. A learning algorithm for analog, fully recurrent neural

networks, Proc. Intl. Joint ConL on Neural Networks, Washington, D.C.,

Vol. I, p. 643-644, 1989.

[10] Williams, R.J., and D. Zipser. A learning algorithm for continually

running fully recurrent neural networks, Neural Computation, Vol. 1, p.

270-280, 1989.

[11] Pearlmutter, B. Two new learning procedures for recurrent networks,

Neural Network Review, Vol. 3, p. 99-101, 1990.

[12] Elman, J. Finding structure in time, CRL Tech. Report 8801, Univ. of

California at San Diego, p. 1-29, 1988.

[13] Zipser, D. A subgrouping strategy that reduces complexity and speeds

up learning in recurrent networks, ICS Tech. Report 8902, Univ. of

California at San Diego, p. 1-5, 1989.

[14] Haffner, P., A. Waibel, H. Sawai and K. Shikano. Fast

backpropagation learning methods for large phonemic neural networks,

Proc. Eurospeech '89, Vol. II, p. 553-556, 1989.

[15] Webb, A., D. Lowe and M. Bedworth. A comparison of nonlinear

optimisation strategies for feed-forward adaptive layered networks, Royal

Signals and Radar Establishment memorandum 4157, Malvern, England,

p. 1-33, 1988.

[16] Vapnik, V. Estimation of Dependencies Based on Empirical Data,

Addendum A, §2. Springer-Verlag, 1982.

[17] Gopalakrishnan, J.S., D. Kanevsky, A. Nadas, D. Nahamoo, M.A.

Picheny. Decoder selection based on cross-entropies, Proc. IEEE IntI.

ConL on Acoustics, Speech and Signal Processing, New York, Vol. I, p.

20-23, 1988.

[18] Lang, K.J., A.H. Waibel, and G.E.Hinton. A Time-Delay Neural

Network Architecture for Isolated Word Recognition, Neural Networks,

Vol. 3, p. 23-43, 1990.

Figure 1: Plot of several quantities as a function of

 training iteration:

1. Training error Et

2. Cross-validation error Ev

3. Number of blocks in training subset, divided by 100

4. Root mean square of the weights

5. Fraction of training examples correctly recognized

6. Fraction of cross-validation examples correctly recognized

