
17  

 
Comparison of feed-forward and 
recurrent sensitivities in speech 
recognition 
 

________________________________________________________________________ 
 

GARY M. KUHN and RAYMOND L. WATROUS 

Siemens Corporate Research, Princeton, NJ, USA  

 

 

17.1 Introduction 

  
In earlier work, we defined and calculated the sensitivity of each output unit of a feed-

forward network to each input feature in its training set at each point in time. This 

calculation suggested the need for a change in architecture, and led to a subsequent joint 

optimization of the network and its input features. 

  

   Now we define and calculate the sensitivity of a recurrent network to each input 

feature in the same training set at the same points in time. This calculation makes it 

possible to quantify the extent to which the two types of networks have similar 

sensitivities to their inputs.  
 

 

17.2 The networks 

 

In Kuhn and Herzberg (1991) our feed-forward network was a 'time-delay neural 

network' with one hidden layer:  
 

 
 

where yk(t) is the output for class k at time t, S is the symmetric sigmoid y = 2(1 + e
-x
)

-1
 

-l, S(·) = yk(t), S[·] = yj(t - l) is the output of hidden unit j at time t – l,  yi (t – l – d) is the 

output of input unit i at time t – l – d, l is a time-lag from hidden to output unit, d is a time-

delay from input to hidden unit, and wθj and wθk  are bias values.  

 

________________________________________________________________________ 

Appeared in Artificial Neural Networks for Speech and Vision. Edited by Richard 1. 
Mammone. Published in 1993 by Chapman & Hall, London. ISBN 0 412 54850 X  



 
FEED-FORWARD SENSITIVITY                                                                             269 

 

   The recurrent network was identical to the feed-forward network except that it also had 

output self-loops with unit time delay:  

 

 
 

   The feed-forward network was trained to discriminate the spoken letter names 'b', 'd', 'e' 

and 'v', and achieved 88.5% accuracy on test examples. The recurrent network was 

trained on the same task and achieved 89.6% accuracy on the same test examples (Kuhn 

and Herzberg, 1991).  

 

 

17.3 Feed-forward sensitivity 

 

Kuhn (1992) defined and calculated the sensitivity of each output unit of the feed-

forward network to each input feature observed in the network's training set at each point 

in time. This sensitivity was time-dependent, to avoid integrating over times in the input 

when sensitivities might have opposite sign.  

   The feed-forward sensitivity si
k(t) of output unit k to input i at time t was defined as  

 

 

where 

                
and 

                     
yielding 

                       
 

   It is easy to confuse sensitivity si
k(t) with the derivative of the output of unit k at time t 

with respect to feature i. Note that the derivative requires a sum over those earlier times 

whose feature i affects output k at time t, while the sensitivity requires a sum over all 

later times t + τ at which output k is affected by feature i at time t. 

   The sensitivity is also similar to the gradient of the system error at unit k with respect to 

the weight from feature i. But the sensitivity omits the first factor of the error gradient, 

namely the derivative of the error with respect to unit k's output, and it substitutes wijd for 

the last factor of the error gradient, namely for yi(t – l – d). 

 



270                                    FEED-FORWARD AND RECURRENT SENSITIVITIES 

 

   To compare sensitivities when the feed-forward network was responding as desired 

with those when it was not, we ordered the training examples by how well they were 

discriminated (Kuhn, 1992). At the well-discriminated end of the ordered list of training 

examples, we found that there was little residual sensitivity: the network responses were 

locally robust to perturbations of the inputs, and the responses were correct.  

   At the poorly-discriminated end of the ordered list of training examples the network 

actually mis-classified the last 10% of the training examples. Here we could also have 

found little residual sensitivity, which would have meant that the network responses were 

once again locally robust to perturbations of the inputs, but this time, the responses would 

have been wrong. Instead, what we found was (1) there was much more residual 

sensitivity for the poorly discriminated training examples, (2) some input features had a 

net negative bias of their sensitivity while others had a net positive bias, and (3) the total 

absolute sensitivity, i.e. the magnitude of the sensitivity, differed markedly from feature 

to feature.  

   The residual sensitivity for the poorly-discriminated training examples was both bad 

news and good news. It was bad news because we always wanted robust, state-to-state 

jumps in the outputs of our network, but we sometimes got volatile and weak ramping of 

the outputs. On the other hand, the residual sensitivity was also good news, because it 

indicated that there was still more slope to be exploited by the training algorithm.  

 

17.4 Feature optimizing  

 

The biases and magnitudes of the sensitivities suggested that a global one-to-one affine 

transformation should be applied independently to each feature. The recognizer was 

augmented to implement this transformation, by adding what we can think of as a new 

optimizing layer with a 1-element localized receptive field. Figure 17.1 shows both the 

original and the augmented recognizer.  

   Writing the original inputs-to-hidden transformation as:  

 

 
 

the augmented transformation becomes:  

 

 
 

   We can set the linear part of the original transformation equal to the linear part of the 

augmented transformation 

 

 
 

 



FEATURE OPTIMIZING                                                                                    271 

 

 
 

Figure 17.1 Original and augmented recognizer. 

 

 

and then set the original weights wθj and wijd equal to the corresponding quantities from 

the augmented system  

 

 
 

Does this equivalence mean that the 1-to-1 affine transformation of the inputs was 
useless? It does not. Any number of pairs of multipliers can produce the same (dot) 
product, but not all pairs will train the first member of the pair (the weight) equally 
easily, because training is proportional to the second member of the pair. By allowing 
global changes to individual components in the input, additional paths through weight 
space can open up to perhaps previously unreachable solutions. This can improve the 
trainability of the network, as well as the interpretability of the features. It is true 
however, that after training we could fold the feature optimizing weights back into the 
input-to-hidden weights of an architecture like that of the original classifier.  

With the added layers, the network can concentrate the scale and offset of an input 
feature at a single location, via the 1-to-1 affine transformation, rather than having to 
distribute that scale and offset across all the connections and units that follow an input 
unit. For example, if weight decay is imposed on our optimized-to-hidden and hidden-to-
output weights, more of the input scaling can be forced into the 1-to-1 affine 
transformation.  

As it turned out, further joint optimization of the augmented feed-forward network did 
increase discrimination of the test examples to 89.6%, while further optimization of the                                             
 



272                                         FEED-FORWARD AND RECURRENT SENSITIVITIES 
 
original network for the same additional number of iterations yielded no increase. 
 
 
17.5 Forward calculation of recurrent sensitivity 

  

The recurrent network has self-loops with unit delay on its output units. Because of this 

added recursive structure, a change in the input to unit k at any time will affect all further 

outputs of that same unit. Therefore the recurrent sensitivity is 

 

 
 
where the difference between the feed-forward and recurrent sensitivities is that the factor 

(∂yk(t + τ,))/(∂xk(t + τ)) has become (∂yk(t + τ, ... , T))/(∂xk(t + τ)).  Since we have yk(t + τ, 

..., T) = yk(t + τ) + ... + yk(T), it follows that 

 

 
 

where the first term is the only term that exists in the feed-forward case. 

 

 

17.6 Backward calculation of recurrent sensitivity  

 

The forward calculation of recurrent sensitivity can either be carried out in its entirety, or 

it can be truncated, or it can be ignored in favor of the following backward calculation of 

recurrent sensitivity.  

   We use the familiar chain rule to expand: 

 

 
and 

 
Thus 

 
 



 

SIMULATIONS                                                                                                   273 

 

 If we compare with the gradient of a mean square error objective function:  

                                                                                                                                                                        

 
 

where 
 

 
 

we see that the computation of the output-input sensitivities can be organized very 

similarly to the back-propagation-in-time algorithm. That algorithm may be modified by 

injecting an error of 1 only for the selected output unit at each time step, and by 

extending the back-propagation one more step to compute the partials with respect to the 

inputs; the sensitivities may be read off directly from the backpropagation data structure.  

 

 

17.7 Simulations 

 

To apply these definitions, we made two new training runs on our speech data, and then 

calculated both the feed-forward and recurrent sensitivities in the backward direction, 

using the GRADSIM simulator (Watrous, 1992).  

   The speech data are divided into a training set of 672 utterances and a test set of 96 

utterances. Both the feed-forward and the recurrent network were optimized using a 

conjugate gradient algorithm until the MSE was reduced to 0.008; at this point, 

discrimination of the training set was 90.0% for the feed-forward network and 91.5% for 

the recurrent network.  

   However, discrimination of the test set was only 78.1% for the feed-forward network 

and only 82.3% for the recurrent network. This is worse than the 88.5% and 89.6% 

previously reported on the same data (Kuhn and Herzberg, 1991). We point out that in 

the simulations reported here, as opposed to those reported by Kuhn and Herzberg 

(1991), the networks actually used the logistic non-linearity y = (1 + e
-x
)

-1
 rather than 

the symmetric sigmoid, and the training runs did not include either a perodic cross-

validation step or an alternation between global stochastic search and local gradient 

search.  

   After training, the feedback weights wkk for the spoken letter names 'b', 'd', 'e' and 'v' 

were, respectively, 4.2, 2.9, 0.4 and 1.2, indicating that the recurrent network did weight 

previous time more heavily for the relatively dynamic voiced stop-consonants 'b' and 'd'.  

Figure 17.2-5 show, respectively, feed-forward sensitivities on the best discriminated 

training examples, feed-forward sensitivities on poorly-discriminated training examples, 

recurrent sensitivities on the same best-discriminated training examples and recurrent 

sensitivities on the same poorly discriminated training examples. Training example 

discriminability was measured using the feed-forward network. The measure was the 

smallest error for an incorrect class divided by the error for the correct class.  



274                                         FEED-FORWARD AND RECURRENT SENSITIVITIES 

 

                 d            d             d              v            b                  v            v             e 

 
 

 

Figure 17.2 Features and feed-forward sensitivities for best-discriminated training examples.  

 

                 b            e          v             b              b                e                b             d     

 
 

 

Figure 17.3 Features and feed-forward sensitivities for poorly-discriminated training examples.  

 

                 d            d             d              v            b                 v            v            e 

 
 

Figure 17.5 Features and recurrent sensitivities for same training examples as in Figure 17.2. 



SIMULATIONS                                                                                                   275 

 

                 b            e          v             b              b                e                b             d     

 
 
 

Figure 17.5 Features and recurrent sensitivities for same training examples as in Figure 17.3. 

 

 

   More specifically, Figure 17.2 shows the 8 best-discriminated utterances and Figure 

17.3 shows the last four correctly discriminated and the first four mis-discriminated 

utterances, both for the feed-forward network. Figures 17.4 and 17.5 show the same well-

discriminated and poorly-discriminated utterances, respectively, for the recurrent 

network.  

   There are five panels in each of the four figures. In the top panel there are 17 speech 

features as a function of time. From bottom to top, the features are 16 filter bank energies 

ordered from low frequency to high (Kuhn, 1992), and one event signal (Kuhn et al., 

1990) turning on and off above the filter energies. In panels 2-5, we see quantities 

relating to the 'b', 'd', 'e' and 'v' output units. These quantities, from bottom to top in each 

panel, are the sensitivity of the indicated unit to each of the filter bank energies, the 

sensitivity of the indicated unit to the event signal, and the response of the unit. The 

display of the sensitivities ranges from white, for large negative values, to medium grey, 

for zero values, to black, for large positive values.  

   In Figure 17.2, the feed-forward sensitivities for the well-discriminated examples, the 

overall sensitivity values are fairly uniform and close to zero. Slightly lighter or darker 

regions are evident in some areas, especially when the output unit corresponds to the 

token being uttered. The recurrent sensitivities for the well-discriminated utterances, in 

Figure 17.4, are in general quite similar to those of the feed-forward network. There is, 

however, less sensitivity of the recurrent b-unit for the 'b', and increased sensitivity of the 

recurrent v- and e-units in response to the final 'e'.  

   In contrast, there are many more extreme sensitivity values in the poorly-discriminated 

examples. Again, the feed-forward and recurrent sensitivities are similar. For example, 

both want a weaker second formant if the e-unit is to increase its response (incorrectly) to 

the third 'b'. Some recurrent sensitivities are however more salient, particularly those of 

the b-unit.  

 

 



276                                         FEED-FORWARD AND RECURRENT SENSITIVITIES 

 

Note, finally, the alternation of the sign of the sensitivities across channels and panels at 

the same time. This alternation suggests that the network is trying to balance the residual 

sensitivities.  

 

 

17.8 Discussion  

 

We have touched on several topics that we now go over again, one by one.  

   The definition of the speech event signal is found in (Kuhn et al., 1990), where the 

delayed event signal was first used as both the target signal during training, and as the 

hypothesized target signal during recognition.  

   The small improvement reported for the 1-to-1 affine transformation in Kuhn (1992) is 

similar to the small improvement reported for the 'autonorm layer' in Seidel et al. (1992), 

where the better the data was normalized prior to being input to the network, the less 

benefit there was to using the 1-to-1 affine transformation.  

   We looked for a revealing ordering of the sensitivity data and chose an ordering by 

discriminability. Other revealing orderings could be examined, such as those favored by 

projection pursuit (Friedman and Tukey, 1974).  

   The use of residuals in system identification, of which residual sensitivity is only one 

example, is discussed in generous detail by Draper and Smith (1981, Ch.3).  

   A thoughtful discussion that includes approaches to training large, fixed size networks 

by alternating between global random search and local gradient search, is found in Barron 

and Barron (1988).  

   We believe that the sensitivity analysis permitted us to find a better architecture for 

joint optimization both of the data representation and of the effective parameters of the 

classifier. This approach of joint optimization can be juxtaposed to an approach where 

one emphasizes the difference between optimizing data representations and optimizing 

the class of approximating functions, as in Geman et al. (1992). 

 

  

17.9 Conclusion  

 

To recapitulate, we have a feed-forward network and a recurrent network. Each has been 

trained to discriminate the speech sounds 'b', 'd', 'e' and 'v' using the same set of training 

data. The recurrent network performs slightly better on test data.  

   We have already defined and calculated the sensitivity of the outputs of the feed-

forward network at each time to each input feature in the training set. This calculation 

suggested the need for a change in architecture and led to a subsequent joint optimization 

of the network and its input features.  

   We have now defined and calculated the sensitivity of the recurrent network at each 

time to each input feature in the training set. This calculation makes it possible to 

quantify the extent to which the two types of networks have similar sensitivities to their 

inputs.  

 



 

 

REFERENCES                                                                                                   277 

 

Acknowledgements  

 

We thank colleagues F. Block, R. Cohn, R. Mammone, C. Olano, V. Poor and M. 

Williamson for helpful discussions.  

 

 

References  

 

Barron, A.R. and Barron,  R.L. (1988)  Statistical Learning Networks:  A Unifying View. 

Computing Science and Statistics: Proc. 20th Symposium on the Interface, pp. 192-203. 

Draper, N.R. and Smith, H. (1981) Applied Regression Analysis. Wiley, New York, NY, 

pp.141-92.  

Friedman, J. and Tukey, J. (1974) A projection pursuit algorithm for exploratory data 

analysis. IEEE Trans. Computers, 23,881-90.  

Geman, S., Bienenstock, E. and Doursat, R. (1992) Neural networks and the bias/ 

variance dilemma. Neural Computation, 4,1-58.  

Kuhn, G.M. (1992) Joint optimization of classifier and feature space in speech 

recognition. IJCNN' 92, IV, 709-14.  

Kuhn, G.M. and Herzberg, N.P. (1991) Some variations on training of recurrent 

networks, in Neural Networks: Theory and Applications, (eds. R. Mammone and Y. 

Zeevi), Academic Press, New York, NJ, pp.233-44.  

Kuhn, G.M., Watrous, R.L. and Ladendorf, B. (1990) Connected recognition with a 

recurrent network. Speech Communication, 9,41-9.  

Seidel, F., Becks, K.H., Block, F. et al. (1992) B-Quark tagging using neural networks 

and comparison with a classical method. Second Intl. Workshop on Software 

Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear 

Physics, La Londe-Les-Maures, France, January 13-18.  

Watrous, R.L. (1992) GRADSIM: A connectionist network simulator using gradient 

optimization techniques. Siemens Internal Report, November 17.  

 

 

 

 

  


