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Abstract
We illustrate the relation between sound propagation in the acous-
tic tube and formant-based acoustic cues for the phonetic dimen-
sion of place of articulation.

1 Introduction

We model an acoustic tube as a pressure source exciting an acoustic filter. We
model the pressure source at frequency f as being given by cos(27 ft). We model
the filter which transmits the acoustic disturbance with a vector of cross-sectional
area measurements a(z;) at coordinates #;,¢ = 1,2,...,n, where 1 = 0 cm, 2, = {
cm, [ cm is the length of the tube, and do = ;41 — «; is the uniform spacing of the
measurements.

Ignoring losses, we can define the response of the filter to the source in terms
of two functions of position and time. These functions are the excess pressure at
frequency f, py(z,t), and the particle velocity at frequency f,uy(x,t):

ppx,t) = ps(x) cos(2m ft),
up(z,t) = uyp(x)sin(27 ft).

Each of these functions is a product of a function of x and a function of . The
functions of  are a pressure function, ps(z), and a particle velocity function, uy(z).
The functions of ¢ are the harmonic excitation, cos(27 ft), and the same function
with a phase difference of 7/2, or sin(27 ft).!

To represent the source and the filter response for voiced speech we model the
source as having excitation at all frequencies which are integral multiples, m, of
some lowest or fundamental frequency, fo. Then the net response of the filter is
a net pressure, p(z,t), and a net particle velocity, u(z,t), each defined as a sum
over frequencies mfy, m = 1,2,..., M, of the corresponding frequency-dependent
quantities:

plz,t) = pr(l‘,t),
I

u(x,t) = Zuf(x,t).
f



Finally, we can define the function called volume velocity, y;(z,t), which equals
area times particle velocity:

Xz, t) = xp(2)sin(27 ft) = a(x)uy(x) sin(27 ft).

If the tube has uniform cross-sectional area, then volume velocity is related to
particle velocity by a single multiplicative constant. The vocal tract has approxi-
mately uniform cross-sectional area for the vowel /o/.

Starting with this physical model, here are some problems that we can solve:

1. Find the zeroes over frequency of py(lips), i.e., the formant frequencies.

2. Relate constriction of the uniform tube to changes in formant frequencies.

3. Relate changes in formant frequencies to acoustic cues for place of articulation.
4. Relate constriction of other tubes to changes in formant frequencies.

5. Relate changes in formant frequency to rules derived from listening tests.

In the next sections of this paper these problems are addressed one at a time.
2 Find the Formant Frequencies
To solve problem 1 we can apply Webster’s horn equation [1,2,3,4]. Webster’s

equation relates the velocity potential, ®, to the area function A(z):
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where ¢ is the velocity of sound a2 333m/s. The quantity ® is related to pressure
and particle velocity by two further equations [2]:
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The quantity py(lips) does not depend on time. So we can simplify Webster’s
equation to get rid of the dependency on time. If we let ® = @y (2)sin(27 ft), then
Webster’s equation becomes

¢+ (InA) + ke =0 (1)
where ' = d/dr and k* = (27 f/c)?.
The equation relating ¢ and u becomes
o = —u.
And, the equation relating ® and p becomes

p = p27foy(x)cos(2mft).



It is clear from this last equation that ¢ () is proportional to py(z), the pressure
function of . It follows that the zeroes over frequency of ¢y (lips) are identically
the zeroes over frequency of p¢(lips). So, by solving for the zeroes of ¢ (lips) we
will find all and only the formant frequencies.

To derive an expression for u’, we can differentiate ¢’ = —u and substitute in
(1), obtaining

u' = k?p — (Ina)u. (2)

This done, we make a choice about how to represent (Ina)’ between measure-
ments. Following Chiba and Kajiyama [2] we have chosen to use the average deriva-
tive of log area, a’(¢), on each interval ¢, ¢ = 1,2,...,n — 1, where

a'(i) = Infa(zi1)/a(x;)]/de, a(z;) > 0,

and to represent pressure, particle velocity and volume velocity as linear in each
interval, so that all four functions are approximated as piecewise linear.

Next, we define boundary conditions for ¢ and u at z = 0, that 1s, at the back
end of the tube. The boundary condition for the pressure quantity ¢ is ¢(0) = 1.
Together with the definition of the source as cos(27 ft), this condition implies that
at (x,t) = (0,0) the air at the back of the tube is maximally compressed. The
boundary condition for the particle velocity quantity w is 4(0) = 0. This condition
is consistent with a tube that is closed by an unyielding wall at the back, which
approximates the nearly closed back of the vocal tract during voiced speech.

Now we can compute the pressure and particle velocity quantities, ¢ and u,
transmitted from the left edge, # = 2, to the right edge, * = x4, of interval ¢,
t=1,2,...,n— 1. Note that the output pressure quantity of the preceding interval,
@ar(1— 1), will be the input pressure quantity of the following interval, ¢o(4),7 > 1.
Similarly, the output particle velocity quantity of the preceding interval, uq, (i — 1),
will be the input particle velocity quantity of the following interval, wy(7).

Two cases arise. Either @’ is zero on the interval, or it is nonzero. If @’ = 0,
then (2) simplifies to

U/ — kzgp
From ¢’ = —u we also have v/ = —¢” | so
S0// — —]ngo.

The reader can verify by differentiating twice that

¢ = acos(kx) + Bsin(kx), (3)
and
¢’ = —aksin(kx) + Bk cos(kz) = —u. (4)

Solving for @ and g at xg using Cramer’s rule:
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Substituting (5) and (6) in (3) and reordering terms,

[cos(kx) cos(kxo) + sin(kx) sin(kzg)]
[sin(kx) cos(kag) — cos(ka) sin(kxy)].
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Applying the formulas for cos(a + b), and sin(a + b) we obtain

/

w(x) = o cos k(x — xg) + % sin k(x — »o).

We find the pressure transmitted to the end of interval ¢, by setting x = ¢+ dz:

/
Yz (1) = po cos(kdr) + % sin(kdz).

Either by substituting (5) and (6) in (4), or by differentiating (7),

0l (1) = —poksin(kdz) + ¢f) cos(kdr) = —ugy(7),

so the particle velocity at the end of the interval is

ugr (1) = pok sin(kdr) — ¢ cos(kdz).

(7)

9)

The second case arises when a’ # 0. We can estimate the average value of

i) = poli) + ¢'()Ax
= o(7) — up(i)Ax.

pressure on interval ¢, .(7), as a linear function of the initial conditions for pressure
and particle velocity on the interval. Let Axz = dx/2. Then, since pressure is
piecewise linear, its average value on interval ¢ occurs at @ = xg + Az, 1.e. in the
middle of the interval. The slope of pressure is obtained from ¢’ = —u and the
initial condition for particle velocity:



Next, we can estimate the average value of particle velocity on interval 7, u. (), by
integrating (2). To integrate (2) we are forced to approximate pressure as constant
on the interval, so we use the average value just computed, ¢, () [2]. Writing

1= kZ%
Coy = El/,
so that (2) becomes
d
—u=c; — Cau
dx 1 2%,

we integrate, exponentiate and solve for u:

— In(e; —equ) = x4 c3
o

€1 — cou = e~ 2T = 4027

where A = ¢%3, and so

¢ — Ae™ 2%

C2
The factor A,

A= (c1 — cau)e®

can be estimated for interval ¢ using ¢.(¢) and the boundary condition ug at & = :

A = (1 — coup)e™™e. (11)

Substituting (11) in (10):

_ c1—(e1—cau,)ef20eTo2°

u =
%(1 _ e—gi(x—xo)) + uoe—@(w—xo)‘ (12)

Since particle velocity is piecewise linear, its estimated average value on interval
i, ue(4), occurs at @ = xg + Awx. In estimating u.(7), therefore, the indices of (12)
simplify and we obtain

ue (i) = —(1 — e7°2B7) - yge™ 287 (13)

where ¢1 = k%, (i) and ¢ = @'(i) .



Given these equations, we can now write a second expression for the average
value of pressure on interval ¢. Our first expression, from the initial conditions on
the interval, was

pe(i) = poli) — uo(i)Az,

but given the particle velocity at the middle of the interval, u. (), we can compute

pe(i) = po(i) — ue(i)Az.

Also, we can now write a second expression for the average value of particle
velocity on interval i. Our first expression, from ¢.(7) and integrating u', was

ue(i) = Z—l(l — e 2AT) | yge 2R

but given (i) and u.(7), we can now compute u. (i), where

(i) = kP o (i) — @' (i)ue (i),

and

u(i) = uo(i) + v/ (i)Ax.

When values are computed for these expressions, we hope that ¢, () is close to
we(?) and wu.(7) is close to u.(é). Then we may decide to forget any differences. But
if these pairs of quantities are not satisfactorily close, the traditional way around
the problem has been the following:

1. note that wu.(7), p.(7) and u.(¢) are all functions of ¢.(7), and

2. perturb ¢.(7) in an iterative numeric or graphic procedure until acceptable
numbers are obtained [2].

Alternatively, following a suggestion from I. Kessler [5], we can give an algebraic
expression for the value of ¢, (i) that minimizes the following error criterion:

E2(i) = [pe(i) = e ()] + [ue(i) — ue ()], (14)
Let
z = (i), (15)
and
ue(i) = 2V + a,

where V = k%(1 — e%22%) /¢y, and a = ug(i)e 222, Then let

uw'(i) = k%2 — ca(2V + a),
u(i) = up(i) + /(i) A, (16)



¢'(1) = —ue(i),
pe(t) = poli) = (2V 4+ a)Ax (17)
=b—zVAz,

where b = ¢o(i) — aAz, so that we can define the pressure error, E, (i), as

where Y = VAz + 1, and the particle velocity error, F, (%), as

Eu(i) = ue(i) — uc(s)
W+ d,

where W = k?Az — V(caAz +1), and d = ug(i) — a(caAz +1). Then (14) becomes

E2(i) = (b—2Y)? + (2 W + d)?,
and the error as we change ¢.(7) has a minimum at

d
TE=WEW +d) =Y (b—2Y) =0,
z

or

. bY —dW
pe(i) =z = Yirwe (18)

Calculating ¢, (7) from (18), u. (%) from (15), «'(¢) from (16), and ¢’(7) from (17)
we obtain error minimizing values for the pressure transmitted to the end of the
interval, ug,(7), from

Pz (i) = (i) + ¢'(1)Ax
Uz (7)) = ue(i) + v/ (i) Ax.

Repeating our calculations over n — 1 intervals, we obtain estimates of the pres-
sure and particle velocity transmitted to the open end of the tube. Repeating our
calculations over the frequencies of interest, we find those frequencies for which
@y (lips) is zero, or the formant frequencies of the tube with the given area function,
thus solving problem 1.

Note that we have used the term “formant frequency” to mean exactly a “natural
resonance frequency” of the tube [6]. We should keep the notion of a formant
frequency distinct from that of a “formant frequency estimate,” e.g., a measurement
made with the use of spectrograms.

We have compared formant frequencies calculated with these procedures to for-
mant frequency estimates measured from spectrograms, for six vowels spoken while
x-rays were made of the vocal tract area function [3]. The average magnitude of
the error was 10% for Fy, 13% for F5 and 8% for F3.



3 Relate constriction of the uniform tube to changes in formant
frequencies

Experience with Webster’s equation has led at least three researchers to make
or repeat the following statement:

When part of a pipe is constricted, its resonant frequency becomes low  (19)
or high according as the constricted part is near the maximum point of
the volume (velocity) or of the excess pressure. [2,3,7]

We emphasize this statement because it predicts qualitatively how individual
formant frequencies should change as a tube is constricted at different # coordinates.
To 1llustrate these predictions quantitatively for the uniform tube, we must decide
how to model constriction of the tube, and we have to compute the x coordinates
of the extrema of volume velocity and pressure at each formant frequency for the
tube before it is constricted. Then we can compare the predictions of statement
(19) with computed changes in formant frequencies.

To model constriction of the uniform tube, we let A(z) be a vector of 17 cross-
sectional area measurements, each equal to 4 cm?, with a spacing of 1 cm. Then
we constricted this 16 ¢cm uniform tube on centimeter-long intervals starting with
interval 1, at the closed back of the tube and moving centimeter by centimeter to
interval 16, at the open front of the tube.

As indicated at the top of Figure 1, constriction at each interval was modeled
in six steps. First, the uniform tube was left unconstricted on interval 7: a(z;) and
a(x;41) were left at 4 cm?. Second, the uniform tube was constricted half-way to a
target constriction of .5 cm? on interval 7, that is to 2.25 cm?. Third, the uniform
tube was constricted to .5 em? on interval i. Then, redundantly, the same amounts
of constriction were modeled in reverse order for steps four, five, and six. The first
three formant frequencies were computed for the tube at each of the six steps, by
the procedure given in Section 2.

At the bottom of Figure 1, the formant frequencies for constriction of interval 12
(4-5 ¢cm from the lips), are plotted. The abscissa is labeled with the step number;
the ordinate is labeled in kHz. The lines connect the values obtained for each for-
mant frequency over the six steps. This formant pattern suggests both the formant
frequencies and the formant frequency changes that should occur if a 16 ¢cm vocal
tract were used to make a vowel-constriction-vowel articulation that starts and ends
with the vowel /o/, and has the constriction located on the interval 4-5 cm from
the lips.

To locate the extrema of volume velocity and pressure before the tube i1s con-
stricted, we turn to Figure 2. In the top panel of Figure 2, we display x;(z) and
—x7(2), the volume velocity function of # and its negative, at the first three for-
mant frequencies. The curves are shifted vertically by an amount proportional to
the formant frequency. Over time, volume velocity at each frequency varies between
the higher and the lower of the two curves. The zeroes of volume velocity at each
frequency occur at those x coordinates where the two curves intersect. The extrema
occur where the two curves are maximally separated. Note that there is an ad-
ditional zero and extremum for each higher formant. Note also that in the fourth
panel of Figure 2 we display the approximate position of the fixed articulators along
a 16 cm vocal tract [2].



According to the top panel of Figure 2, there are extrema of volume velocity at
3.2 ¢cm, 9.6 ecm, and 16 em (the lips) at the third formant frequency. Also, there
are extrema of volume velocity at 5.3 cm and 16 ¢m for Fo, and at 16 cm for Fy.
In the same panel, there are zeroes of volume velocity for F3z at 0 cm, 6.4 cm and
12.8 cm. Also, there are zeroes of volume velocity for Fy at 0 cm and 10.7 ¢cm and
for Fy at 0 em.

In the uniform tube, volume velocity is related to particle velocity by a single
multiplicative constant, and we know that ¢’ = —u. It follows that the coordinates
of the zeroes of volume velocity are the coordinates of the extrema of pressure.

According to statement (19), constriction at an extremum of volume velocity for
a particular formant should lower that formant frequency. Therefore, in the second
panel of Figure 2, labeled “Effect on resonance,” we have placed a minus sign in the
row for each formant, on each centimeter-wide interval which contains an extremum
of volume velocity in panel one. Similarly, we have placed a plus sign in the row
for each formant on each centimeter-wide interval which contains an extremum of
pressure in panel one.

In other words, the minuses and pluses indicate statement (19)’s predictions
about what should happen to each formant frequency if the uniform tube 1s con-
stricted on any of the marked intervals. The prediction for changes in formant
frequencies on the unmarked intervals might reasonably be that they vary mono-
tonically with the “nearness” to the neighboring marked intervals.

The third panel of Figure 2, labeled “Characteristic formants,” displays one
graph of formant frequencies on each interval ¢;2 = 1,2,...,16. Across intervals,
the abscissa still indicates centimeters for panel 3. But within each interval the
abscissa indicates the constriction step. The formants are at the frequencies for
constriction step 1 at the left edge of the interval and for constriction step 6 at
the right edge of the interval. For example, the formant graph from Figure 1,
for constriction of interval 12, can be recognized on interval 12. Interpreting the
constriction steps as occurring over time, the ¢th graph enables us to see what the
formant frequencies should look like as a constriction on interval 7 is made and then
subsequently released.

Let us call a change in formant frequency over time a “formant transition.” The
formant transitions in panel three of Figure 2 are, in general, consistent with state-
ment (19). Where a lowered formant frequency was predicted, the change in that
formant frequency is negative going into the constriction, and then positive coming
out. Where a raised formant frequency was predicted, the change in that formant
frequency 1s positive going into the constriction, and then negative coming out.
Note, however, that the marked interval is sometimes adjacent to the interval with
the greatest change in formant frequency in the predicted direction: for example,
F3 moves lower on interval 3 than on interval 4. Note also that on some intervals in-
termediate between the marked intervals, the direction of formant transition shows
a slight reversal from constriction step 2 to constriction step 3: for example, Fz on
interval 2 rises at step 2 and falls at step 3.

4 Changes in formant frequency are acoustic cues to place of
articulation

For phonetics, the significance of (19) and Figure 2 is that they predict a physical
basis for acoustic cues to “place of articulation,” as we now explain.



Panel 5 of Figure 2 is a phonetician’s array of phonetic symbols for consonants of
American English?. Each row of this array represents a “manner of articulation” for
the consonants. Thus the /m/ in the first row differs from the /b/ in the second row
by being a nasal instead of a stop consonant. Each column of the array represents a
“place of articulation” of the consonants. Thus the same /m/, in column 16, differs
from the /n/ in column 13 by being a bilabial nasal instead of an alveolar nasal.

At some (row, column) positions of the array, two phonetic symbols appear.
In these positions, the two consonants differ by their “voicing”: the consonant
to the left is “voiced,” and the consonant to the right is “voiceless.” Thus the
(stop, bilabial) /b/ differs from the (stop, bilabial) /p/ by being voiced. Place of
articulation is, then, a phonetic dimension along which the consonants of American
English, and, we believe, all languages, can be ordered.

Panel 5 has been aligned with the rightmost six columns of the physical arrays
in panels 1-4. In this position, the phonetic dimension of place of articulation
correlates well with the physical dimension which gives the location of the fixed
articulators. Thus, a bilabial consonant constricts the vocal tract at the lips, a
labial-dental consonant constricts the vocal tract a little further back, at the lips
and teeth, and so on.

One implication of this alignment is that the phonetic sequence /o- any bilabial
consonant -a/ should have formant frequencies that look like those directly above,
in graph 16 of panel 3. Another implication is that the sequence /o- any labiodental
consonant -a/ should have formant frequencies like those in graph 15, and so on.
In short, Figure 2, predicts formant patterns for the various places of articulation
from the distributions of volume velocity and pressure for the 16 ¢cm uniform tube.

Listening tests have shown that acoustic stimuli with formant patterns like those
of panel 3 can function for human listeners as sufficient acoustic cues to the place
of articulation categories of panel 5. For example, speakers of American English
listened to stimuli whose time-varying formants look like those at steps 4 through 6
in graphs 11 through 16. The formant amplitudes rose rapidly at the beginning of
the stimuli. The listeners perceived a consonant-vowel stimulus. The listeners were
asked to label the consonant either /g/, /d/ or /b/. The predominant response was
/g/ for patterns like graph 11, /d/ for patterns like graph 13, and /b/ for patterns
like graph 16 [8]. Analogous results have been obtained in labeling experiments
with nasals, [9] fricatives, [10] and sonorants [11].

Other observations and experimental results reveal, however, that Figure 2 is an
oversimplification of the relation between formant patterns and place of articulation.
For one thing, the inventory of place of articulation categories to be mapped onto
constriction coordinates varies over languages. French, for example, has a voiced
pharyngeal sonorant /R/ that could be aligned at interval 6 [12]. For another,
Figure 2 implies that consonants of identical place of articulation have identical
formant patterns. It turns out that consonants of identical place of articulation
have only similar formant patterns, for reasons that include the following:

4.1 Vocal tract length and vocal tract proportions vary over talkers.

As a result, different formant frequencies and different formant frequency ra-
tios are observed over talkers even for sounds perceived phonetically as the same

[13,14,15,16].
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4.2 The relation of physical place of constriction to phonetic place of
articulation can be many to one.

For example, constriction coordinates that cover at least intervals 10 through
12 have to be used to model the velar consonants [3].

4.3 Air flow characteristics vary over manner of articulation.

4.3.1. At the glottis, increased flow due to abducted vocal cords can occur during
a fricative as well as at the release of an affricate or stop. As a result, F; can be
weak or absent during a fricative as well as at the release of an affricate or stop
[9,12].

4.3.2. At the constriction, high-speed turbulent flow can occur during a fricative
as well as at the release of an affricate or stop. As a result, high-frequency noise
can occur during a fricative as well as at the release of an affricate or stop [9,12].
Zero flow at the constriction occurs for the occlusives (flaps, affricates, stops and
nasals), with the result during the flaps, stops and affricates that all formants briefly
disappear [12,17,18].

4.3.3. At the velum (the soft palate), flow is diverted through the nose for nasals,
which causes “nasal” formants to appear, at different frequencies [12,19].

4.4 Airflow characteristics vary over voicing.

4.4.1. At the glottis, the vocal cords are more completely abducted for voiceless
fricative, affricates and stops. The results include increased flow, a total absence of
any fundamental frequency of vocal cord vibration (the “voice bar” in the spectrum),
and the presence of glottal noise or “aspiration” [12].

4.4.2. At the constriction, the increased flow creates conditions for stronger and
perhaps also longer turbulence during a fricative, as well as at the release of an
affricate or stop [12].

4.5 Constriction characteristics vary over manner of articulation.

4.5.1. The amount of constriction tends to be less for sonorants than for frica-
tives, and less for fricatives than for occlusives. Where there is less constriction,
formant frequencies deviate less from those for the uniform tube, and less from
those for other places of articulation [3,20].

4.5.2. The rate of constriction can be slower for sonorants than for fricatives,
and slower for fricatives than for occlusives. Thus the time derivative of formant
frequency can be smaller (as above) and the time interval of transition can be longer,
for less constricted sounds [21].

4.5.3. The duration of maximum constriction can be longer for sonorants and
fricatives than for flaps, affricates and stops, so the formant frequencies can exhibit
their maximum deviation from the frequencies of the uniform tube during a longer
period of time for the former than for the latter [12].

4.6 Constriction characteristics vary over voicing.

4.6.1. The duration of maximum constriction varies over voicing, with voiceless
consonants tending to be longer [22].

4.6.2. The timing of constriction varies over voicing, with longer vowels tending
to occur before voiced consonants [23].
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For reasons such as these, the formant patterns for consonants with the same
place of articulation will not be identical, but only similar. To sum up, in a fixed
phonetic environment, here /o- consonant -a/, the direction of formant transitions
appears not to vary across consonants at a single place of articulation, but the same
cannot be said for the excitation, extent and timing of transitions.

5 Relate changes in formant frequencies across area functions

The most important shortcoming of Figure 2 is that it does not give formant pat-
terns for constrictions applied to a starting non-uniform area function. Statement
(19), however, predicts that these formant patterns, too, will depend on the distri-
butions of volume velocity and pressure. So, in Figure 3, we show area functions for
six vowels, /iewsoa/ [2], volume velocity at the first three formant frequencies for
each area function, and the formant patterns for constriction of each area function.
The area functions are either 16 or 17 cm long. Constriction of each centimeter
long interval ¢ was modeled in six steps as before: a(z;) and a(z;41) were first left
unconstricted, then constricted half-way to .5 cm?, then constricted to .5 cm?, and
then back again. No starting a(z) was less than .5 ecm?.

Three observations can be made directly from Figure 3. First, there are large
proportional changes across area functions. For example, the area at the lips for the
vowel /o/ or /uwi/ is approximately one quarter of that for the vowel /a/. Also the
area at the middle of the mouth for the vowel /i/ is an order of magnitude smaller
than that for the vowels /a/ or /o/. Finally, the area of the pharynx for /a/ or /o/
is approximately an eighth of that for the vowel /i/.

Second, those extrema of volume velocity and pressure that are not at the lips
or the glottis do move somewhat. We only show volume velocity but since ¢’ = —u,
the extrema of pressure vary similarly to the zeroes of volume velocity. For example,
volume velocity for F3 has its first zero at 4 ¢cm from the lips for /i/, 3 em for /ui/,
2.3 em for the rounded /o/, 3 cm for /a/, 3.2 ecm for /o/ and 3.5 cm for /e/.

Third, the extreme downward or upward movements of the formants still occur
near the coordinates of the extrema of volume velocity and pressure. For example,
volume velocity at Fs for /i/ has its first zero at 4 cm from the lips, and the formant
patterns on the fourth and fifth intervals show maximum upward movement of F3.
Volume velocity at Fg for /ui/ has its first zero at slightly more than 3 em from
the lips, and the formant pattern on the fourth interval shows maximum upward
movement. And volume velocity at Fg for /o/ has its first zero at 2.3 cm from
the lips, and the formant pattern on the third interval shows maximum upward
movement.

The formant patterns of Figure 3 are aligned at the lip interval, enlarged and
superimposed in Figure 4. Note that Fs is shifted 500 Hz and F3 1000 Hz, so that
Fy, F3 and F3 do not overlap. Some changes in formant transitions with vowel
formant frequency are noticeable. For example, the coordinate of the maximum
upward movement of F; moves forward from 14 cm as the vowel Fy decreases. Also
the amount of downward transition for Fy with a lip constriction, or for Fy with a
pharyngeal constriction, increases with the vowel formant frequency.

If we take the difference between each formant frequency and its step 1 or vowel
formant frequency, then we can compare just the formant transitions. This has been
done in Figure 5. Note how similar these formant transitions are to the formant
frequency pattern for constriction of the uniform tube. Where a plus or minus
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transition was predicted for the uniform tube in Figure 2, the same direction of
transition is observed in Figure 4. So, F; always rises on the interval starting 15 cm
from the lips, and falls on the interval at the lips. Fo always rises on the interval
15 ¢cm from the lips, falls at 10 cm, rises at 5 cm and falls at 0 cm from the lips.
F3 rises at 15 cm, falls at 12 cm, rises at 9 cm, falls at 6 cm, rises at 3 cm and
falls at 0 cm from the lips. These observations suggest that the distributions of the
extrema of volume velocity and pressure are after all very similar across vowel area
functions [4].

Large and variable transitions occur 5-6 cm from the lips (Fg down and F4 up),
3-4 ¢m from the lips (F3 up), and 0-1 cm from the lips (F» down). These are the
approximate coordinates of the widely used velar, apical and bilabial articulations.
Small and relatively invariant transitions occur 2-3 cm from the lips, at the approx-
imate coordinate of the rarer lingua-dentals. Apparently, languages are more likely
to signal place of articulation with transitions that are more extreme, even if they
are not more invariant.

6 Relate changes in formant frequency to rules derived from
perception tests

Psychologists have experimented with rules for synthesizing stimuli to produce
the desired percepts of place of articulation. In the best-known rules, the notion
of a target formant frequency or “formant locus” was introduced [9,12,24]. As an
example of how a formant locus can be used, look at the falling and then rising
transitions of F; on the lip interval of Figure 4. Starting from the six different
vowel formant frequencies, six different amounts of downward formant movement
take place as the constriction 1s made on this interval of the tube. A formant locus
makes possible one rule for synthesizing all six patterns. The rule is this: start at
the vowel formant frequency, go half-way toward a locus frequency of 200 cycles, and
then return. This single rule is very adequate for describing all the F; transitions
on this interval.

However, no similar rule can describe the transitions modeled on the lip interval
for either Fy or F3: there is no single target frequency toward which all the tran-
sitions may be said to point. Some transitions are shallow and at high frequencies
while others are deep and at low frequencies. Futhermore, no single target fre-
quency appears for Fy or F3 anywhere in the intervals corresponding to the places
of articulation for English.

Still, formant loci have had success as a basis for rule synthesis. To understand
this, we can compare Figure 6 with Figures 4 and 5. Figure 6 plots the Fs and F3
loci proposed for each English place of articulation [10, 12]. Place of articulation is
on the abcissa; the proposed Fy and F3 loci are listed, each ordered by increasing
frequency, on the ordinate. An “x” in the grid indicates the F5 or F3 locus for place
of articulation at that column.

The proposed F5 loci move higher in frequency as place of articulation moves
from bilabial back to velar. The proposed F3 loci move higher and then lower as
place moves over the same values. Similarly, the average frequency of Fy at extreme
constriction in Figure b, and the average deviation of F5 in Figure 6, move higher as
place of articulation moves from bilabial back to velar. Also the average frequency
of F3 at extreme constriction in Figure 5, and the average deviation of Fz in Figure
6, move higher and then lower as place moves from bilabial back to velar.
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In other words, the proposed formant loci may give the best single frequency
toward which to point the formants. Here “best” means that these loci produce the
fewest confusions of intended and perceived place of articulation.

For the velar place of articulation, however, it was found quite early that the
single locus had to be replaced by a locus that varies with vowel context [9]. Thus,
the velar F5 locus given in parentheses in Figure 6, is solely for the context of
unrounded nonback vowels. Then with just a few loci, far fewer than the number
of vowels, identifiable and more natural stimuli were produceable by rule [25].

Context-dependent loci are now being used for all places of articulation in auto-
matic speech recognition [26]. They are called “pseudo-loci” and are defined as the
difference between the formant frequency seen at extreme constriction and that at
the loudest part of the vowel. Pseudo-loci appear to insure that the transitions to
be synthesized or recognized are more like the deviations expected from Figure 5.

7  Summary

We have reviewed sound propagation in the acoustic tube for the purpose of
computing formant frequencies. We derived changes in formant frequencies by con-
stricting a model tube. We related the changes in formant frequencies to acoustic
cues for the phonetic dimension of place of articulation. We compared changes in
formant frequencies by constricting tubes with different cross sectional areas. And
we related trends in the changes in formant frequencies to formant based cues mo-
tivated by listening tests. To sum up, we have used the physical model to illustrate
the relation between sound propagation in the acoustic tube and formant based
acoustic cues for the phonetic dimension of place of articulation.
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9 Footnotes

1. In the acoustic tube, forward-going and reflected waves at frequency f require
one quarter of a period to advance from coordinates where identical pressures inter-
sect (extreme pressure) to coordinates where identical particle velocities intersect
(extreme particle velocity). For a review of sound propagation in an elastic medium,
see H. Levitt and D. Monk. 1981. “Sound transmission in tubes: a simplified treat-
ment and an analysis of errors of approximation.” In A. S. House, Ed., Proceedings
of a Symposium on Acoustic Phonetics and Speech Modeling. Princeton: Institute
for Defense Analyses — Communications Research Division. 2: Paper 14.

2. After Peterson, G. B., and J. E. Shoup. 1966. A physiological theory of
phonetics. J. Speech Hearing Research. 9: 5-67.
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c Appendix 1. FORTRAN subroutine for computing PHIf(X), Uf(X).
SUBROUTINE niwe(n,dx,f,phi(1)) tcalled for each freq f
implicit integer (a-z)
parameter (size=16)

real dlnadx(size) !d(log area)/dx
real phi(size), avphi(size) 'phi, avg phi

real u(size), avu(size) lu, avg u

real dphidx(size), dudx(size) td(phi)/dx, d(u)/dx

real a,b,c,c2,d,delx,dx,f,k,V,W,Y

¢ initialize

delx=dx/2. 'dist. to midpoint of section
u(1)=0. 'init. condition for part vel
c=33333. lvelocity of sound, cm/sec
k=2.%3.14159%f/c 'radians#*cycles/cm

¢ for each tube section
do i=1,n-1 'n sections, each of length dx
c2=dlnadx(i) !derivative of log area

¢ if cylindrical tube section: exact values of phi, u at end of section
IF (c2.eq.0) THEN
phi(i+1)=phi(i)* cos(k*dx)-u(i)*sin(k*dx)/k
u(i+1) =phi(i)*k*sin(k*dx)+u(i)*cos(k*dx)
ELSE

¢ otherwise, conic section: estimate avg phi, avg u in section
a=u(i)*exp(-c2*delx)
b=phi(i)-a*delx
d=u(i)-a*(c2*delx+1)
V=k**2% (1-exp(-c2*delx))/c2
W=k**2*delx-V*(c2*delx+1)
Y=V*delx+1
avphi(i)=(b*Y-d*W)/(Y*Y+W*W) Iminimizes phierr**2 + uerr**2
avu(i)=avphi(i)*V+a

¢ estimate d(phi)/dx, d(u)/dx in section
dphidx(i)=-avu(i)
dudx (1) =k**2%avphi(i)-c2*avu(i) 'k~ 2%phi = ci

c approximate phi and u at end of section
phi(i+1)=avphi(i)+dphidx(i)*delx
u(i+1)=avu(i)+dudx(i)*delx
ENDIF

¢ continue with next section
enddo
return
end
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